If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2-14c-36=0
a = 2; b = -14; c = -36;
Δ = b2-4ac
Δ = -142-4·2·(-36)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-22}{2*2}=\frac{-8}{4} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+22}{2*2}=\frac{36}{4} =9 $
| 422=8x+270 | | b^2+14b+24=0 | | 121+x+29=180 | | -15=p=4p | | x11+9=11 | | 13-y=206 | | 2.2=6.7-0.5x | | -9=6w–7w | | -21−38+x=-37 | | T(-4)=6+3x-2 | | -15x−19=-12 | | 56/80=x/100 | | S(2)=12-0.25x | | 98=5u+8 | | 4c-8=7c+77 | | -21x−38=-37 | | 73=1+3x | | 10+(3x/5)+3=4x | | 9x=324 | | 8y−5=y+9 | | P=13+5d/9 | | 6x+15=75+2x | | (8/6)x=3/4 | | 11/10-(5x-2)=1/5x-12 | | S(-4)=12-0.25x | | y+39=-89 | | H(2)=7-2x | | (10+3x)/5+3=4x | | H(0)=7-2x | | 2x+2+66=90 | | 9x-17=4x+33 | | 10x-2=7x+8 |